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COLLAPSE OF A ONE-DIMENSIONAL CAVITY”

S.P. BAUTIN

Isentropic potential flows arising when a one~dimensional cavity collapses into an
ideally polytropic continuous medium are examined. The analysis is carried out up
to the instant of focussing or up to the instant infinite gradient arise in the flow.
As a result of the investigation of the analytic solutions in special variables for
the polytropy exponent-1 <y< 3, it is proved that a free boundary separating the
medium and the vacuum moves for some time with a constant velocity. Next, the
solution is sought in physical space as a series in a neighborhood of the free
boundary. When:'v>1 it is proved that the series converges and the free boundary's
acceleration begins only from the instant of origin of an infinite gradient. An
ordinary differential equation is obtained, governing the behavior of the gradient
on the free boundary. The solutions of this equation are studied by numerical
calculations and particular solutions are found. It turned out that the instant of
origin of the singularity depends in an essential manner on the initial data.
Exponents v« are introduced, such that when vsivf there are no singularities on the
free boundary up to the focussing instant if at the initial instant the medium was
homogenecus and at rest. When Y>> ¥« the function % =t4(y) , viz., the instant of
origin of an infinite gradient on the free boundary, is obtained. Calculations
carried out by a difference scheme showed that when y <7v. up to the focussing in-
stant and when y>>7v, up to instant f there are no large gradient inside the whole
flow region. The exponents ¥ coincide with those found earlier papers (**)inwhich
the problem being investigated was investigated by means of constructing several
terms of asymptotic series. It is concluded that when 1<y<3 the free boundary
moves for some time ¢, >0 at a constant velocity, and when <X v, =1+ 2/i1the time

¢, coincides with the focussing instant 4 = (y — 12 and e <tiwhen ¥>7,. The com-
plete construction of the asymptotic expansions and the exact estimates of these
expansions was not carried out. Power series solving the original problem in the
exact statement are constructed recurrently in this paper. All the facts obtained
are proved on the basis of the study of the convergence domains of these series.
When 1<{y<(3 they coincide with earlier derivations.

1. We examine an at-rest homogeneous ideally polytropic medium with exponent Y >1 and
a vacuum separated by a surface (a cylinder or a sphere, where the vacuum is inside and the
medium is on the outside). At instant ¢ = ( the surface is instantaneously removed and a one-
dimensional flow of the medium into the vacuum commences. The region of the flow being ex-
amined, is bounded, on the one, hand, by the free boundary separating the medium from the
vacuum and moves with the medium's velocity on this boundary, and, on the other, by a weak
discontinuity which separates it from rest and moves with the velocity of sound ¢; in the
medium at rest. In the planar case the solution is a centered simple rarefaction wave with
linear profiles of the velocity and of the velocity of sound; the free boundary moves with
constant velocity 2¢,/(y — 1) /1/.

It is difficult to solve the stated problem in the physical space (z, !) because of the
presence at ¢=0 of an infinite gradient which is instantaneously "smeared”, and the flow
resembles a centered wave. Therefore, as in /2/, we can consider the boundary-value problem
for the analog of the potential ¥ {r,#) in the space of the variables (", ) {r is the medium's
velocity, { = 2 corresponds to cylindrical symmetry, i =3, to sperical)
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V¥, ¥, + (@ — 1)y — )Y, (¥, —r /2 =V (Y, =) — (v — D(¥, —r*/2)] (L.1)
W(0,8) =c2/(y—1), ¥,0,0) =ct+Ryy V,.(,0=0

The conditions as r == ( are a consequence of the fact that a weak gap separates the flow from
rest and moves with velocity ¢-. The constant R, > (0 prescribes the surface's position at
t = 0. Without loss of generality we can take it that ¢, = R, = 1. The last condition in (1.1)
is a consequence of the surface's instantaneous removal. In a neighborhood of point (r =0,
t = 0) problem (l.1) has a unique analytic solution /3/, and the convergence domain of the
series in powers of r is unbounded in ¢ /4/. The flow in the physical space canbe recovered
by the formulas (P (x, ) is the flow's potential, ¢ is the velocity of sound)

z—_—llf” (Dx:r7 czﬁ(v—i)(qft_rz/z)

We construct the solution of prcblem (1.1) as

T, ()
‘F(r,t):Z kz(:s) (1.2)

k=0

Then the initial and boundary conditions in (l.1) become the relations

T30 =0, 7,00 =1/(y—1), Tx0) =0
Ty =1, T,y0 =1, Ty =0 k>2 T,/0=0
Therefore, T,(r) =r. Having set f=0 in Eg.(l.1) and allowed for the form of T, (r),we obtain
(T — 1) = (y — (T, —r*/2)

Using the condition for T, (0) (the condition on 7" (0) will be automatically fulfilled), we
finally find

. 1
nn=—=g(iFtrx1f + -
Henceforth, we choose the plus sign corresponding to the collapse of the cavity (the minus
sign corresponds to expansion). Having differentiated Eq.(l.1l) with respect to ¢, set t =0
and allowed for the forms fou.nd for T,(r) and T, (r), we obtain for T, (r) the equation
— @y —OT,/ (i) = (¢ — Dy — v/ 4

v=14+(y—1r/2
The condition T, (0) = 0 ensures the solution's uniqueness, while the condition T, (0) =0 is ful-
filled automatically. As a result

(=1 +1) i L vz] 5 oyt
y—1¢ [(Z—a)u—a)TZ—a T—a] when v¥*-3.3 oa=qo—5

To(r)= 6(i—1)v2[vlnv——r-] , y=,i

Tz(f):

3 3
Tofr)=(G — D)v*[r —Ilnv], y=3

When integrating, lv|appears and to avoid unnecessary awkwardness we consider the case 7T >
—2/(y —1). Note that o >1 when y<< 3.
Having differentiated Eq.(l.l) k times (k> 2) with respect to ! , set ¢t =0 and allowed
for the forms of T, and T, we obtain for Ty, the equation
, — 1
T —-ﬂ—l)i(fi)—h . =_Fk+1
k=1

Frp= Z NTyT g+ Y NaT 7T+ ok Z CPTp g -+

p=2 p=2

V‘NT Zc T(Torsn + vk (k — 1) mTx + - 0*Ty -

P-Z
HZZNT;MT +vm2/crk—ZNT ZC Tyl petss —
p-1 =1
k-2

mk Z BTyl — 20 Z NTpuT, — 20omkTy +
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k-2 k-1

Vs 2 NTpaTy -+ yanhTy — Z NT;HT;H
p=1

p=1

Yl=?+1v Y2=Y"—'1’ q=k——p. N=Ckp

2
Tl o2, m=20—1E—1)

=

If in Fy,; the upper limit in the sums is less than the upper, then such a sum equals zero
by definition. We note that Ty, T/, T\" with 2<{I<{k occur in Fy, . The initial conditions
Tre1 {0) = O (k > 2) ensure the solutions' uniqueness, while the conditions Ty, (0) =0 are auto-
matically fulfilled. This can be shown by induction, taking into account that either r or T,
or T/ (2 <l k)enter as multipliers in each summand of F,,; . The form of Tyu{r) can be
written out in terms of a quadrature

TA'H (T) =1)k‘”'1 [Ck+1 + —'\’%{- S Fk+1 (U) v—ka—e d"]

where the iy is uniquely found from the initial conditions. Series (1.2) solves problem
(1.1); the series coefficients are locallay analytic functions of 7r. Therefore, series (1.2)
is a locally convergent over-expansionin powers of ¢ of the analytic solution of the problem
being examined. For a more exact description of the convergence domain we considexr the
structure of Ty (7).

Assertion. When k >»1 the coefficients of series (1.2) have the form

Tipy == 0*Pppy, 1 (1, 0% 0Inw), 1<y <3
Trsy=0*Pryy, 2 (v, 100}, y=3
Ty = Pra s (0% v Inw), >3

When 1 < y << 3 the leading power of v in Ty equals max {k +2,ak + 1} Here P, . (v, w,...) is
a polynomial in its variable, n, m denote the polynomial's number but not its degree.

The proof is carried out in several stages of induction. The inducation's base follows
from the form of T, (r). At first is established that 7,, is a polynomial of 7, % v, In v when
y>1. This follows from the fact that for finding Fp., we need to multiply out and add » v,
T, T/, 7" 2<1< k) which by the induction hypothesis have the needed form. wWhen finding 74,
the resultant expression is integrated, multiplied by *" and added to Cp ™, di.e. the
structure is preserved. The next step is to prove the presence of multipliers * and the
absence of negative powers of v when v< 3. This is ensured by the fact that in Fy,y, each sum~
mand has one of the following expressions as a multiplier: 2, Ty, 0TV, T'X T/ (2<<L, m<k). After
the multiplication of a summand of form u*#1oP:y (B, p, > 0) from Fy,, by v**%, integration and
multiplication by »*', the multiplier »® is preserved. In the summand ¢, /' the power
of vis automatically not less than two since a>1 when'y<3 and #> 2. Finally, in casevy <3
in T {(2< 1<k we consider separately integer powers of v and powers of vin whose exponents g«
entered as a multiplier or a summand. In what follows these powers of v are called fractional
powers of v. Of course, this division is somewhat conditional since there 1is a countable
number of ¥ in the interval 1<{y<(3, for which «is an integer. Having assumed that in
T; 2< 1<k the maximum integer power of » equals !+ 1, we get that in F,,, the maximum in-
teger power equals k- 2. After the multiplication by vF2  yt can appear undexr the integral
only at this maximum power of v (since a>1). But this is possible only when o =1+ 1/k, i.e.,
when y = 2 4 (k — 2)/ (k+2). Hence, after the integration, Inv can appear only for these values
of Y. 1If these values of ¥ have still not been examined, then after integration of these sum-
mands lnv does not appear and the maximum integer power of ¥ in 7y, is k- 2.

Let us consider the fractional powers of v. Having assumed that in 7y 2<I<¥ there
are only the powers (!l —Na+1—18, 1—2— o+ 24+ ) — I3, 4, b 130, we get that in Fy, there
are only the powers Aa — L, (k — 1 — L) a + (2 4 &) — 3. After the multiplication of these powers
of vby %2, 1 does not appear since o> 1. Consequently, after integration and multiplic-
ation by v**! the powers of , are preserved in the summands being considered, and, in addition,
the summand Cpy ! is added to Ty, . By the same token we have established that when y= 2 -+
(k —2)/(k42), k>2nv does not appear in Ty,,r» and the maximum power of v equals max {k + 2, ko +

1} Now let =2+ (kg — 2/(ko+ 2) with a fixed k,>>1. Then, once again examining integer
powers of v and fractional powers of | v separately, we get that Iny does not appear in 7; when
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1<k + 1, the highest integer power of v is 1+ 1, and the highest fractional power of v is
max {I+1,(l—1)a+1}. When k=4, the highest integer power of v in F, 1is k,+ 2 and after
integration the summand Folp v appears in Txy . But a=1-+1/k, therefore, the summand has
the form #**lnyv, i.e,, the highest integer power is once again k-4 2. When integrating the
fractional powers, Inv does not arise. When constructing the succeeding T, &E>%), Inv and
its powers in Fgq has as factors powers of v such that after multiplication by **? summands
of form v'lh®*v do not appear since k> k,a>1,i.e., Inv does not grow because of the integra-
tion, and, therefore, the powers of lnv grows no faster than the powers of v when y==2-+
(t#—2)/+ 2. Having assumed that T;= *P, (v, sIn v) and using the guadrature for Tj,,, weget that
Tyyy = 92Py,, (v, vln v). The assertion has been proved.

Since series (1.2) converges locally, while when 1 <9 <3 the series coefficients are
polynomials of v and VInv and the degrees of the polynomials are not higher than mMmax {k+2
ak + 1}, it can be proved, as in /4/, that a constant M > 0 exists such that series (1.2) and
the series for ¥, ¥, ¥,, ¥, ¥, converge in the domain

Mot <1, E=max {1, v, jvinv]}

In particular, the series listed yield a solution of problem (1.1} for 2y -1 L r<L0,
0t tg>0. The quantities Ty (k> 1) have co-factor %, therefore, whenr = —2/(y —1)

we have ¢ =0, z =1-2t/ (y —1). Thus, in the space of variables (z, ) series (1.2) restores

the flow in the whole of the region being examined from the weak discontinuity up to the free
boundary which moves toward the lessening of # with constant velocity —2/(y —1) for 0 <t < t,.
In the general case !, is less than the focussing time #; = (y —1)/2 of the free boundary into
the center of symmetry. For other y the convergence domain is prescribed by the formulas

MEst<1, & =max{l, v, {lnv]} vy=3
Mot <21, & =max {1, v, v}, |Imz|} y>3

M,, M,, a,, o, are positive constants. Therefore, when t>0,v=0 the series automatically di-
verge (the summands ¢ In®*p and tfy-%% when t>0, vy -0 grow as k grows), and on the basis
of an analysis of these series it is not possible to derive any mathematically precise facts
concerning the constancy of the flow velocity or the acceleration of the free boundary. We
note that formally when y=3 we have ¢=0 and £ =1—2¢/(y — 4) when r.=2/(y —1) i.e.,
formally here the free boundary's motion takes place with a constant velocity.

2. We now consider the flow in the space of (z, #). If for the equation
O -+ 204, D, -1 (D? — ¢2) Dy — (i — 1) 3Dy j 2 == 0, (2.1)
el —(y — 1D, — (v — 1) @2/ 2.

describing the flow's potential, we specify at ¢ = ¢, > 0 the analytic initial conditions
D(z, t)) =@ (2), Dz, L)) = ¢ (7)y T>T0= 1=2%/(y —1) >0 (2.2)

then by the Cauchy— Kovalevskaya theorem the resultant problem has a unique analytic solution.
The prescribing of conditions (2.2) is equivalent to prescribing the velocity of sound and the
medium's velocity at ?=1,. Later on we study the gquestion on vhether the free boundary in
the solution of problem (2.1), (2.2) moves for some time with constant velocity if the initial
data (2.2) satisfy the additional conditions

éc?
¢ (a0, fo) = 5= (@0, to) =0, Oy (Z0. to) = — 2/ (y — 1) (2.3

(In particular, they are satisfied by the centered rarefaction wave and by the solution ob-
tained in Sect.l). We study as well the gquestion on whether the initial data are compatible
with the solution resulting from the decay of the discontinuity when ¢ = 0.

To answer the questions posed we make the change of variables 2 =z 4 2t/{(y — 1) —1, o=t
i.e., as a new coordinate axis we take the assumed free boundary. In what follows we omit the

ime. h diti
prime The conditions (D:x ©, 8= "‘2/(? —1), 20, = 0

are prescribed when z =0 . As a result we obtain the problem
4 4 2
(D“[(y—i)ﬂ + T—1 ®z+®zs_c3] "_ 2®”<'\""1 +®z> +
Dy — (i — 13D, A —2t1(y—1) +2]=0
A=1-20, —(y — )0, —(y —1)D,2/2
QO D= +Dtlly =1, 0 )==2/(—1)
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which is a characteristic Cauchy problem and, therefore, has a nonunigue solution. Having
represented the solution as

O (z, 1) =£§ak () 2* (2.4)

we get that the coefficients & (f) must satisfy the ordinary differential equations

(a'+-azy+(v+1)a(a:+az)_2f_":.2_§l/%§.§>_= i a=2a, (2.5)

Gt + G (v —1)a + 20k - 2@ — 21— 1)/ [1— 2t/ (y— 1)J} +
e+ 2)ak+2{(k—{-1)(_3’__';‘_1_ar+?_}1aa>+(v e+
20’ —2(—1)e/(1—2t/(3—1)]} =

1 . ..
Prea (m 1000 By B, Gha), R 1

Because it is unwieldy we do not present here the actual form of Py, The equations for
ay (k > 3)are linear and, therefore, the singularities of their solutions can hold only at the
focussing instant when ¢ =, and further at those instants when there are singularities in
a; (§). If for these equations the initial conditions

@ (go) = Ckm ak' (50) = Ckn k > 2
are prescribed, such that the series

o

D, (2, L) == ) (k + 2) (k + 1) Cren, o2

k=0

D, (2. 85) = g,ﬂ (B 2)(k 4 1) Chag, 15°

converge locally, then the problem posed for @ (z, fyhas /3/ a unique locally analytic solution.
The prescribing of conditions on @k (£}, ax' (¢,) (k> 2) is equivalent to prescribing conditions
(2.2) and (2.3). Then from the uniqueness of the analytic solution follows the coincidence of
the solutions of problem (2.1)— (2.3) and of the problem for @ (z, f). By the same token we
have proved that the free boundary on problem (2.1)— (2.3) for any ¢ >>1still wmoves with
constant velocity for some time ) It te > b

If the discontinuity prescribed at instant ¢ =0 decomposes so as to form a locally
analytic isentropic flow, then the right~hand sides of conditions (2.2) are uniquely deter-
mined by this flow. To find the instant f{, it is necessary to describe in detail the converg-
ence domain of series (2.4). A detailed investigation of this question is not presented here
because of its awkwardness. We merely point out that the boundary peoint #, of the convergence
domain of the series (as 7 ~-»{, the radius of convergence of the series tends to zero as some
positive power of the difference |? —{, |} coincides with the instant of origin of a singular-
ity in the solution of Eq.{2.5) for a{f). This fact is proved along the following scheme.

The solution of Eq.{(2.5) can be majorized by a function of form

M/ —(t— )/ pl

where the constant p>0 specifies the distance from & to the closest singularity in a()
that can lie to the right or to the left of 4. The solutions of the equations for a; (1) (k> 3)
can be majorized by polynomials of

vp=A4 [ — 2t/ {y — 1], vp=1/1—(t—t)/pl, vy, Inun

The degrees of these polynomials grow no faster than 4k, where the constant 4 is determined
by the form of Eqg.(2.1). Therefore, a boundary point of the convergence domain of the major-
izing series, and, hence, of series (2.4), is the instant, closest to % , of the origin of
singularities in the solution of the equation for a(f). If such a closest instant is located,
say, to the left of o, then by using the solution obtained we can set analytic initial con-
ditions for ® (s %) at a new instant ¢= 1+ p—¢, where ¢ is a positive quantity much less than

‘P.  Having done this the number of times needed, we get that the instant of origin of a
singularity to the right of the initial instant lies closer to it than the one found to the
left. Conseguently, the boundary points of the convergence domain of the series are the
instant of origin of singularities in-a{tf) independently of which side and of what distance
from the initial % they lie.
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Note. Several terms (no more than two or three) of various asymptotic approximations of
similar problems have been constructed and investigated earlier (*). If we look upon these
terms as the start of infinite series, then in the notation adopted in the present paper these
sexries are oi the form

S hant. S o, Nk et
k) K= kus

8,8, are constants. In the first case and in the secondwith & =1, f, fl,gg,g,,gz coincide with
the corresponding coefficients of series (2.4) if the latter starts off in analogous powers.
1f we have managed to construct recurrently all the £ 8k %, then using the procedure proposed
in the present paper and in /4/, we can most likely prove the convergence of these series in
a neighborhood of the point (=0, i = &), i, >> 0. However, as was obtained for series (2.4} and
for series (1.2), when v>3 we need to expect that the point ¢=10 will be a boundary point
for the convergence domain. Therefore, when U< t< % the convergence domain does not complet-
ely cover the region of the fiow from the free boundary to the weak discontinuity.

Equation (2.5) is the so-called transport equation since it describes the behavior of the
unknown function's gradient on a characteristic which in the case at hand serves as the free
boundary separating the medium from the vacuum. Analogous equations in other variables have
been derived previously for the cases i=3 and i= 2 separately. The singular points of these
equations have been analyzed with the aid of f and f . Particular solutions have been
obtained: Y= % when i=3 and y=9%;,y~2 when i=2

3. Let us cons:.der EqQ. (2.5) for @ (f) and clarify the question on the 1nstants at which
i o Y a o +
e 5) a e t

in the colution We gee that Fa. {2 Amits of +th
n e we gee that ami

a=0; a=i1l =+ 1)/[i+1)t{d —it)] when Y=y =142/4

a=120—)y —1) =4/ Uy —1)* (1 -2t/ (y — )
a=1/{+ ¢

where C is an arbitrary constant. If when prescribing the initial conditions (2.2) the con-
stants (,, and (C,; are taken in accordance with the first three particular solutions found,
then the focussing instant £=1{; will be a boundary point for the convergence domain. If the
constants indicated are chosen in accordance with the last particular solution, then the sing-
ularities on the free boundary will be at instants ¢! = fjand ¢ = —C. Since C is arbitrary, we
can take C = 0. as the constants C,, and C,, we specify the values of #%%dz* and &°D/oz*® at
the point (%, ). A countable collection of constants Cyo and Cy (k> 3) still remain ; with
their aid we can give the global behavior of the profiles @.{z,%)and *(z, 4;): ensure the
necessary monotonicity of the profiles, satisfy the conditions of continuity on the weak dis-
continuity, specify the mass of the medium moving at instant ?=1¢,, etc. Hence, under certain
special initial data the free boundary moves with constant velocity for any Y >1 (if, of
course, singularities do not arise outside the convergence domain of the series). In addition,
in the planar case (i==1)there are two particular solutions to Eg.{2.5) when 7=3 :a =1/(28),

a=(1 —20/12¢(1 —l, with like asymptotic behavior as ¢—»0 . But these functions yield
qualitatively different solutions of problem (2.1)— (2.3): the first is a rarefaction wave and
the second is a flow in which an infinite gradient arises when ¢ =1 Thus, the instant of
origin of a singularity in the solutions of Eq. (2.5) essentially depends on the initial data.

For a subsequent analysis of the equation for @ (f) we can in standard fashion exclude I

from Eq. {2.5) and, next, lower the equation's order. We have hardly succeeded in computing
the general solution of Eq.(2.5%) /5/. With the replacement

y{ty=exp (5 a{t) dt)

we obtain the problem
\ = 7 P N IR PR ~ PO

TRy Ly =@ () 1 @ o)y Ly = a(ly)
convenient for a numerical analysis. The initial values a (&), ¢’ {¢§,) must be chosen from the
solution of the discontinuity decay problem which has been solved with mathematical rigor only

I3 4 Iy

2t/ (p — Dieu-ogvy” = C;; gy =4 ¥ (&)

*) See the footnote on p.4l.
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for 1 <y < 3. The solution found when ; is close to zero is only slightly different from the
solution in the planar case; therefore, for all Y in the calculations we chose initial data
corresponding to the centered wave /1/, i.e.,

Ci= =20y =D/Ily + D&% Co=2/[y +1)¢]

10 s ’

/ Logs

/&;;2 2 / o i
\ 0.5 // y;/z

5= //’ / /l//jify

0 [ z
4 3 II Jd 7
t/t
: /1 0 { }'J
0.5 1.0 5 10
Fig.3
Fig.l Fig.2
Fig.l shows the graphs of the calculations of ¥ (t) for i=3, 1 =0,01. Curves I—4 corres-

pond to the values of #: 1.4; 1.7, 2; 8. For y < yo (o= 1.72 Wheni = 2; v, = 1.45 yhen i = 3) the absolute
value of the medium's velocity everywhere in the flow region is less than on the free boundary
and the flow profiles are monotonic. When 7> % the absolute value of the medium's velocity
immediately after the free boundary, beginning with the instant when ¥ (f) = 0, becomes larger
than on the boundary, i.e., the medium next to the free boundary begins to accelerate and con-
dense. When <! the singularity in the solution always arises at ¢=0.For y<y,= 1-+2/i
the instant of origin of the singularity, to the right of t,, coincides with the focussing
instant t;. These values of 7. coincides with those found earlier (*). When >y, an in-
finite gradient arises on the free boundary at the instant % (0<i,<#4). Fig.2 shows the
function z,(y)=1—1t,/¢ (the solid curve corresponds to ¢{=2 and the dashed, to i=3). We
recall that when ¢=0 the free boundary was located at z=1%. Thus, when Y< Y% a boundary
point for the convergence domain of the series is the point <=0, while when 7> Ysthe point
T == Ty,

To describe the whole flow region we can use for 0< t<t the series (1.2) for 1<v<3 or
the centered rarefaction wave for v>1, for #<t<t, we can use series (2.4) in a neighborhood
of the free boundary and the series for function ¥ (r,t)in powers of r in a neighborhood of the
weak discontinuty /4/. BAll these solutions are well matched with each other in the middle
part of the flow region. When y>»3 the solution in a neighborhocod of the free boundary has
been constructed under an assumption on the corresponding decay of the initial discontinuity.
Qualitatively, this solution is consistent with those found earlier: for large Y infinite
gradients arise sufficiently rapidly in the flow and the free boundary begins to accelerate,
Of course, we can use the series under the condition that in the middle part of the flow region
no singularities arise. It can be shown that there will not be a weak discontinuity inside
the flow region; therefore, it is necessary to observe only the origin of the free gradients.
Rather obvious calculation by difference methods over the whole flow region showed that when
¥<7¥+ there are no large gradients in the flow. When 73> Ve they arise on the free boundary at
instants compatible with f. Fig.3 shows the dependence of the square of the medium's veloc-
ity on zwhen ;=3 Curves 1,2, 3 correspond to the values: vy =14, t=t;y=17,t=t, =5y = 2

t=1t, < t;. When ¥> ¥x the flow's properties of being potential and isentropic are violated at
the instant ¢= f,.After this the free boundary begins to accelerate at the expense of the
medium becoming denser. Therefore, for a further description of the motion it is necessary,
in general, to use the complete system of equations of gasdynamics, possibly, to introduce
shock waves or weak discontinuities, and to make use of the solution obtain in the present
paper for prescribing the initial conditions at ¢t= tye The question on whether the solution of
this new problem is selfsimilar still remains open.

In this paper we have considered the case of cavity collapse, but the majority of the
formulas and calculations carry over without the principal changes to the case of expansion

*) See the footnote on p.41.
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(the vacuum is outside and the medium inside).
REFERENCES

1. ROZHDESTVENSKII B.L. and IANENKO N.N., Systems of Quasilinear Equations and Their Applica-
tion to Gasdynamics. Moscow, NAUKA, 1968.

2. BAUTIN S.P., Approximate calculation method for one-dimensional gas flows induced by non-
monotonic motion of a piston. PMM Vol.40, No.6, 1976.

3. BAUTIN S.P., Characteristic Cauchy problem for a quasilinear analytic system. Differents.
Uravnen., Vol.1l2, No.ll, 1976.

4, BAUTIN S.P., Investigation of the convergence domain of special series solving certain gas-
dynamics problems. In: Numerical Methods in the Mechanics of a Continuous Medium. Vol.9,
Nc.4. Novosibirsk, Vychisl. Tsentr Sibirsk., Otdel. Akad. Nauk SSSR, 1978.

5. KAMKE E., Differentialgleichungen: L¥sungsmethoden und Lbsungen. Band 1: Gewdhnliche Dif-
ferentialgleichungen. New York, Chelsea Publ. Co., 1959.

Translated by N.H.C,



