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COLLAPSE OF A ONE-DIMENSIONAL CAVITY* 

S.P. BAUTIN 

Isentropic potential flows arising when a one-dimensional cavity collapses into an 
ideally polytropic continuous medium are examined. The analysis is carried out up 
to the instant of focussing or up to the instant infinite gradient ariseintheflow. 
As a result of the investigation of the analytic solutions in special variables for 
the polytropy exponent-l<y<3 , it is proved that a free boundary separating the 
medium and the vacuum moves for some time with a constant velocity. Next, the 
solution is sought in physical space as a series in a neighborhood of the free 
boundary. Wheny>i it is proved that the series converges and the free boundary's 
acceleration begins only from the instant of origin of an infinite gradient. An 
ordinary differential equation is obtained, governing the behavior of the gradient 
on the free boundary. The solutions of this equation are studied by numerical 
calculations and particular solutions are found. It turned out that the instant of 
origin of the singularity depends in an essential manner on the initial data. 
Exponents Y* are introduced, such that when Y<% there are no singularities on the 
free boundary up to the focussing instant if at the initial instant the medium was 
homogeneous and at rest. When Y>Y* the function &=&(P) , viz., the instant of 
origin of an infinite gradient on the free boundary, is obtained. Calculations 
carried out by a difference scheme showed that when y<yy* up to the focussing in- 
stant and when Y>Y* up to instant t, there are no large gradient inside the whole 
flow region. The exponents Y* coincide with those found earlier papers (**)inwhich 
the problem being investigated was investigated by means of constructing several 
terms of asymptotic series. It is concluded that when icy<3 the free boundary 
moves for some time t,>O at a constant velocity, andwhen Y<yt=if2Jithe time 
t, coincides with the focussing instant tt = (v-1)/2 and &<%when ~>y+. The com- 

plete construction of the asymptotic expansions and the exact estimates of these 
expansions was not carried out. Power series solving the original problem in the 
exact statement axe constructed recurrently in this paper. All the facts obtained 
are proved on the basis of the study of the convergence domains of these series. 
When l<y<3 they coincide with earlier derivations. 

1. We examine an at-rest homogeneous ideally polytropic medium with exponent r> i and 
a vacuum separated by a surface (a cylinder or a sphere, where the vacuum is inside and the 
medium is on the outside). At instant t =0 the surface is instantaneously removed and a one- 
dimensional flow of the medium into the vacuum commences. The region of the flow being ex- 
amined, is bounded, on the one, hand, by the free boundary separating the medium from the 
vacuum and moves with the medium's velocity on this boundary, and, on the other, by a weak 
discontinuity which separates it frcm rest and moves with the velocity of sound cfl in the 
medium at rest. In the planar case the solution is a centered simple rarefaction wave with 
linear profiles of the velocity and of the velocity of sound; the free boundary moves with 
constant velocity 2c,/(y - 1) /l/. 

It is difficult to solve the stated problem in the physical space (s,t) because of the 
presence at t = 0 of an infinite gradient which is instantaneously "smeared", and the flow 
resembles a centered wave. Therefore, as in /2/, we can consider the boundary-value problem 
for the analog of the potential Y(r,t) in the space of the variables o", t)(r is the medium's 
velocity, i = 2 corresponds to cylindrical symmetry, i=3, to sperical) 
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Y,,Y’,,Y’, + (i - lb - 1) rYrr Wt - r2 / 2) =Y, [(Y,, - r)% - (y - l)(Y, - r? / 741 

Y (0, t) = c,*t / (y - I), Y, (0, t) r= c,t + x0, Y,, (r, 0) = 0 

(1.1) 

The conditions as r = 0 are a consequence of the fact that a weak gap separates the flow from 

rest and moves with velocity Co. The constant R,>O prescribes the surface's position at 
t = 0. Without loss of generality we can take it that co = R, = 1. The last conditionin (1.1) 
is a consequence of the surface's instantaneous removal. In a neighborhood of point (r = 0, 
t = Qproblem (1.1) has a unique analytic solution /3/, and the convergence domain of the 

series in powers of r is unbounded in t /4/. The flow in the physical space canbe recovered 
by the formulas (@ (2, t) is the flow's potential, c is the velocity of sound) 

z = 'F ~, 0, = r, c2 = (y - l)(Y, - r2 i 2) 
We construct the solution of problem (1.1) as 

(1.2) 

Then the initial and boundary conditions in (1.1) become the relations 

T, (0) = 0, T, (0) = 1 / (v - 1), TI, (0) = 0 

T,' (0) = 1, T,’ (0) = 1, Tk’ (0) = 0, k h 2; T,” (r) = 0 

Therefore, T,(r) = r. Having set t = 0 in Eq.Cl.1) and allowed for the form of T,(r),we obtain 

(T,' - 7j2 = (y - 1)(T, - r2 / 2) 

Using the condition for T, (0) (the condition on 3',' (0) will be automatically fulfilled), we 

finally find 

T1 (r) = 
3 ,‘- 1 

J-$r*l)‘+ g 

Henceforth, we choose the plus sign corresponding to the collapse of the cavity (the minus 

sign corresponds to expansion). Having differentiated Eq.Cl.1) with respect to t, set t = 0 
and allowed for the forms found for T,(r) and T,(r), we obtain for T,(r) the equation 

T,' - (3y - l)T, / (40) = (i -- I)(y - l)ru / 4 

p-l+(y-i)r/2 
The condition T, (0) = 0 ensures the solution's uniqueness,whilethe condition T,'(O) =O is ful- 

filled automatically. As a result 

T&!(r) = (i - 1) (7 + 1) 
,CC+t v? va V-t1 

(y-1)” (Z_@(1--) +2--a--l--a 1 when Y#$-,3; a=- 

y=+ 

r,(r)-(i - l)u2[r -lnu], y=3 

When integrating, Ivlappears and to avoid unnecessary awkwardness we consider the case r> 

-2/(y - 1). Note that a > 1 when ~(3. 

Having differentiated Eq.tl.1) k times (k> 2) with respect to t , set t = 0 and allowed 

for the forms of TO and T,, we obtain for Tk+, the equation 
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yl=q, y2=y--1, q=k-p. N=CkP 

~l=~U-~’ qe=2(i - I)@-- 1) 

If in Fkcl the upper limit in the sums is less than the upper, then such a sum equals zero 
by definition. We note that TI, TI’, T,’ with 2 < 1 <k occur in Fk+l. The initial conditions 
Th+l (0) = 0 (k,> 2) ensure the solutions' uniqueness, while the conditions T;,1(O) = 0 are auto- 
matically fulfilled. This can be shown by induction, taking into account that either r or Ti 
or FE'@< I< k) enter as multipliers in each summand of Fk+rf The form of T,+,(r) can be 
written out in terms of a quadrature 

where the ct+r is uniquely found from the initial conditions. Series (1.2) solves problem 
(1.1); the series coefficients are locallay analytic functions of r. Therefore, series (1.2) 
is a locally convergent over-expansionin powers of t of the analytic solution of the problem 
being examined. For a more exact description of the convergence domain we consider the 
structure of Ta(r). 

Assertion. When ,$> t the coefficients of series (1.2) have the form 

Tk+l= u*&,,,(% fl, vlnv), ICY<3 
Tk+l= dPk+l, 2 (0, In v), y -= 3 
Tk,, = P&l,S (0, flz f’, fn U)? y > 3 

When l<y< 3 the leading power of u in Tkcl equals max {k -l-2,ak -!- 1). Here &',,,,,,(u, W, . . .) is 
a polynomial in its variable, n, m denote the polynomial's number but not its degree. 

The proof is carried out in several stages of induction. The inducation's base follows 
from the form of T,(r). At first is established that 2' k+l is a polynomial of vt va,+, In u when 

Y>i. This follows from the fact that for finding pk+l we need to multiply out and add v,Txa-l~ 
Zl,Tl', T1”(2$tGk) which by the induction hypothesis have the needed form. When finding Tk+, 
the resultant expression is integrated, multiplied by vka+' and added to Ck+,~a+l, i.e. the 
structure is preserved. The next step is to prove the presence of multipliers 9 and the 
absence of negative powers of v when yG3. This is ensured by the fact that in Ft+, each sum- 
mand has one of the following expressions as a multiplier: 9, TI,uTI’, TiX T,‘@<t,mSk). After 
the multiplication of a summand of form uz+Plln@~v(~l, pa&O) from Fk+i by v~~-~, integration and 
multiplication by $z+1 the multiplier I@' is preserved. In the summand C,+,b"" the power 
of uis automatically nit less than two since a>,% when yG3 and k>, 2, Finally, in caseY<3 
in Ti(2< t<k)we consider separately integer powers of v and powers of vin whose exponents a 
entered as a multiplier or a surmnand. In what follows these powers of v are called fractional 
powers of V. Of course, this division is somewhat conditional since there is a countable 
number of 1: in the interval 1 <v<3, for which ais an integer. Having assumed that in 
Tf (2G I<% the maximum integer power of Y equals If 1, we get that in P,,, the maximum in- 
teger power equals k+ 2. After the multiplication by v*-, Ir' can appear under the integral 
only at this maximum power of v(since a>l). But this is possible only when a= i+ ilk, i.e., 
when y = 2 + (k - 2)/ W2). Hence, after the integration,ln v can appear only for these values 
of Y. If these values of Y have still not been examined, then after integration of thesesum- 
mands lap does not appear and the maximum integer power of u in Tk+, is k+ 2. 

Let us consider the fractional powers of u. Having assumed that in TI (2$ Kk) there 
are only the powers (2 - l)cz + 1 - I,, (t - 2 - ts) cz + (2 + la) - l,, z,, I,, 23 >O, we get that in Fk+l there 
are only the powers ka - Z,, (k - 1 - &)a + (2 f Is) - 1,. After the multiplication of these powers 
of u by v-'-,t+ does not appear since a> 1. Consequently, after integration and multiplic- 
ation by aR+1 v the powers of v are preserved in the summands being considered, and,inaddition, 
the summand c6+1vuW' is added to r*+* - By the same token we have established that when rf2+ 
(k - 2)/ (k + 21, k 1, 2 In Y does not appear in Tk+l, and the maximum power of v equals mar (A+ 2,ka-b 

11. NOW let y = 2 i- (k, - 2)/(ko -b 2) with a fixed k, > 1. Then, once again examining integer 
powers of 0 and fractional powers of v separately, we get that fnu does not appear in T2 when 
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l<ko+f , the highest integer power of v is I+ i,and the highest fractional power of 11 is 
max (I + 1,(1 - 1) a + 1). When k= k. the highest integer power of v in FE+1 is k,+ 2 and after 
integration the summand @‘+'ln v appears in TX+% . But a= i+ l/ko, therefore, the summand has 
the form z~"*~In u, i.e., the highest integer power is once again z$,+ 2. When integrating the 
fractional powers, In" does not arise. When constructing the succeeding Tk+l(k> k,) , inr~ and 
itspowersin F,+,has as factors powers of v such that after multiplication by ~~~~~~~ summands 
of form u-'l&v do not appear since k> ko, a> 1, i.e., h 0 does not grow because of the integra- 
tion, and, therefore, the powers of Inu grows no faster than the powers of v when y+2+ 
(k - 2) I (k i 2). Having assumed that TI = vaP~fv, &IJ) and using the quadrature for TatI, weget that 
T &+I = ~p~+lf~, dn 4. The assertion has been proved. 

Since series (1.2) converges locally, while when I<?<3 the series coefficients are 
polynomials of v and VIII u and the degrees of the polynomials are not higher than max {k -/- 2, 

ak+ $1, it can be proved, as in /4/, that a constant M>O exists such that series (1.2) and 
the series for yy,, I,, y,,, yTt, yftt converge in the domain 

ME9<1, 5=max{l, u, Ivlnvl} 

In particular, the series listed yield a solution of problem (1.1) for -2i(y - 1) <r < 0, 
0 <t< t,, t,) 0. The quantities TE+l (k> f) have co-factor V', therefore, when r = -2/(y -1) 
we have c =o, z= l--?Ji (y -3). Thus, in the space of variables (2, t) series (1.2) restores 
the flow in the whole of the region being examined from the weak discontinuity up to the free 
boundary which moves toward the lessening of X with constant velocity -2/(Y -1) for O< t,<&. 
In the general case 1, is less than the focussing time 2, = (y -_)/2 of the free boundary into 
the center of syrmoetry. For other 2' the convergence domain is prescribed by the formulas 

M,, Mz,c+,a, are positive constants. Therefore, when t) 0, v= 0 the series automatically di- 
verge (the summands tk h@ u and &-a& when t>O, u--+0 grow as k grows), and on the basis 
of an analysis of these series it is not possible to derive any mathematically precise facts 
concerning the constancy of the flow velocity or the acceleration of the free boundary. We 
notethatformallywhen y=3 wehave c=O andx=i--t/(y- 1) when r_=2/(~-1) i.e., 

formallY here the free boundary's motion takes place with a constant velocity. 

2. We now consider the flow in the space of (x, t). If for the equation 

aft-i- XL@,, -l..(Qzz-- qaTI-(i- I)~~D,!~=(). (2.1) 

c* -= 1 - (v - l)cD, - (y - i)cpxZ / 2. 

describing the flow's potential, we specify at t = &,>O the analytic initial conditions 

Q, (5, to) = cpl (x), q (2, to) = y2 (x), 5 > x0 = 1-w /(Y - 1) > 0 (2.2) 

then by the Cauchy-Kovalevskaya theorem the resultant problem has a unique analytic solution. 
The prescribing of conditions (2.2) is equivalent to prescribing the velocity of soundandthe 
medium's velocity at t= &, . Later on we study the question on whether the free boundary in 
the solution of problem (2.1), (2.2) moves for some time with constant velocity if the initial 
data (2.2) satisfy the additional conditions 

ca(~O,tO)=~(r”~tO)=O, @z(xcl* to)= -2 /(y-I) (2.3) 

(In particular, they are satisfied by the centered rarefaction wave and by the solution ob- 

tained in Sect.1). We study as well the question on whether the initial data are compatible 
with the solution resulting from the decay of the discontinuity when t =O. 

To answer the questions posed we make the change of variables Z = x -i-Zt/(y --‘iIf-%, t’ =t, 
i.e., as a new coordinate axis we take the assumed free boundary. In what follows we omitthe 
prime. The conditions 

0s (0, t) = -249 -I), ca (0, t) = 0 

are prescribed when z = 0 - As a result we obtain the problem 

@zz [&I + &a% + @*+g] + 241.1(& +9*) + 

~,*-((i-I)c~~*/~1- 2t/(y-i)+z]=O 
c2= i-2@, -(y -i)cb, -(y -1p**/2 

6, (0, t) = (y + 1) t /. (y - 1)2, (D, (0, t) = -2 i (y - 4) 
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which is a characteristic Cauchy problem and, therefore, has a nonunique solution. Having 

represented the solution as 

CD (2, 1) = Uk (t) Zk (2.4) 

we get that the coefficients @k(t) must satisfy the ordinary differential equations 

(a’ dy _t + 1) a (a’ -+- a”) - 2f~y--f;;) = 0, a=2aa 

a~,,~ta~+n~(y-l)a+Z(k-~~2)~-2(i-l)~[1-2t~(y-l)1)f 

(k -t- 2) ~+~{(k + 1) (F a’ + * a*) + (7 -I- l)aa + 

2d--2(i-i)a/[l-2t/(y-i)])= 

(2.5) 

, 
t a?3 aar, az”, . . . , akTr, ak+1 ak+l f ‘/) k>l 

Because it is unwieldy we do not present here the actual form of P~+s, The equations for 
at (k> 3) are linear and, therefore, the singularities of their solutions can hold only at the 
focussing instant when t = &and further at those instants when there are singularities in 
s2 0). If for these equations the initial conditions 

% ft,) = Cm,, ar' (t,.J = Ckr, k > 2 

are prescribed, such that the series 

OD,, (2, to) = k$ (k -I- 2) (k + 1) (ha, or 

converge locally, then the problem posed for @(z, t)has /3/ a unique locally analyticsolution. 
The prescribing of conditions on ah (to), Uk'(t,,) (k > 2)is equivalent to prescribing conditions 
(2.2) and (2.3). Then from the uniqueness of the analytic solution follows the coincidenceof 
the solutions of problem (2.1)- (2.3) and of the problem for @(.z,t). By the same token we 
have proved that the free boundary on problem (2-l)- (2.3). for any y > 1 still moves with 
constant velocity for some time t,,<t<t \ ** t >to * 

If the discontinuity prescribed at instant t = 0 decomposes so as to form a locally 
analytic isentropic flow, then the right-hand sides of conditions (2.2) are uniquely deter- 
mined by this flow. To find the instant t, it is necessary to describe in detail the converg- 
ence domain of series (2.4). A detailed investigation of this question is not presented here 
because of its awkwardness. We merely point out that the boundary point t, oftheconvergence 
domain of the series (as t-tt, the radius of convergence of the series tends to zero as some 
positive power of the difference 1 t-t, 1) coincides with the instant of origin of a singular- 
ity in the solution of Eq.(2.51 for a(t). This fact is proved along the following scheme. 

The solution of Eq.(2.5) can be majorized by a function of form 

MI Ii - (t - to)/ p) 

where the constant P>O specifies the distance from to to the closest singularity in = (t) 
that can lie to the right ox to the left of to. The solutions of the equations for ac(t)(k>3) 
can be majorized by polynomials of 

4 = i ! [f - 2t i fy - 111, I$ = 1 II1 - (t - t") / p], In 4, In t‘z 

The degrees of these polynomials grow no faster than Ak, where the constant A is determined 
by the form of Eq.(2.1). Therefore, a boundary point of the convergence domain of the major- 
izing series, and, hence, of series (2.41, is the instant, closest to to, of the origin of 
singularities in the solution of the equation for a (G. If such a closest instant is located, 
say, to the left of to, then by using the solution obtained we can set analytic initial con- 
ditions for CP(%t) at a new instant t= h-k P- E, where 8 is a positive quantity much less than 

P. Having done this the number of times needed, we get that the instant of origin of a 
singularity to the right of the initial instant lies closer to it than the one found to the 
left. Consequently, the boundary points of the convergence domain of the series are the 
instant of origin of singularities in,a(t) independently of which side and of what distance 
from the initial to they lie. 
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Note. Several terms (no more than two or three) of various asymptotic approximations of 
similar problems have been constructed and investigated earlier (*). If we look upon these 
terms as the start of infinite series, then in the notation adopted in the present paperthese 
series are of the form 

6,,&, are constants. In the first case and in thesecondwith &= 1, fo, fz. go* a, .c, coincide with 
the corresponding coefficients of series (2.4) if the latter starts off in analogous powers. 
If we have managed to construct recurrently all the fh, gkr hk, then using the procedureproposed 
in the present paper and in /4/, we can most likely prove the convergence of these series in 
a neighborhood of the point (z= 0, t= to), to>& However, as was obtained for series (2.4) and 
for series (1.21, when y&3 we need to expect that the point t= 0 will be a boundary point 
for the convergence domain. Thexefore, when Q< t< to the convergence domain does not complet- 
ely cove.r the region of the flow from the free boundary to the weak discontinuity. 

Equation (2.5) is the so-called transport equation since it describes the behaviorofthe 
unknown function's gradient on a characteristic which in the case at hand serves as the free 
boundary separating the medium from the vacuum. Analogous equations in other variables have 
been derived previously for the cases i= 3 and i= 2 separately. The singular pointsofthese 
equations have been analyzed with the aid of fa and fi _ Particular solutions have been 
obtained: ?=j'/~ when i= 3 and y = &13,y == 2 when i= 2 

3. Let us consider Eq.(2.5) for a(t) and clarify the question on the instants at which 
singularities arise in the solution. We see that Eq.i2.5) admits of the special solutions 

a = 0; a = i [1 - (i + 1) tl / [(i -t 1) t (1 --- it)] when y = Y* = 1 f 2 / i; 

a = [2 (i - My - 1) - 41 i [fy - 1)2 (1 - 2t I (y - i))l; 

a = l/ (1 + C) 

where C is an arbitrary constant. If when prescribing the initial conditions (2.2) the con- 
stants&, and C,, are taken in accordance with the first three particular solutions found, 
thenthefocussing instant t=t 1 will be a boundary point for the convergence domain. If the 
constants indicated are chosen in accordance with the last particular solution, then the sing- 
ularities on the free boundary will be at instants t = tland t z-c. Since C is arbitrary,we 
can take C = 0. As the constants CaO and C,, we specify the values of d'c2fi?x2 and @@,/ax2 at 
the point (x", Q. A countable collection of constants c&d and Ckl(fc >33) still remain ; with 
their aid we can give the global behavior of the profiles @,(x,t,)and 2(X, t,): ensure the 
necessary monotonicity of the profiles , satisfy the conditions of continuity on the weak dis- 
continuity, specify the mass of the medium moving at instant l=to, etc. Hence, undercertain 
special initial data the free boundary moves with constant velocity fox any Y> 1 (if, of 
course, singularities do not arise outside the convergence domain of the series). In addition, 
in the planar case (i ==*)there are two particular solutions to Eq.fZ.5) when y--3 :a =1 /(at), 

a = (1 -22t)lv&(l --t)l, with like asymptotic behavior as t-+0. But these functions yield 
qualitatively different solutions of problem (2.1)- (2.3) : the first is a rarefaction waveand 
the second is a flow in which an infinite gradient arises when 2 = 1 Thus, the instant of 
origin of a singularity in the solutions of Eq.(2.5) essentially depends on the initial data. 

For a subsequent analysis of the equation for a(t) we can in standard fashion exclude t 
from Eq.(2.5) and, next, lower the equation's order. We have hardly succeeded in computing 
the general solution of Eq.(2.5) /5/. With the replacement 

we obtain the problem 

iI -2C / (JZ - l)](*-b(V-l)yQj" = C,; p (to’, = 1, Y’ (Q s cs 7 Cl = a’ (to) + ua (t,), C, = a (to) 

convenient for a numerical analysis. The initial values a(&), a'(&) must be chosen from the 
solution of the discontinuity decay problem which has been solved with mathematicalrigoronly 

*) See the footnote on p.41. 
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for I<?< 3. The solution found when t is close to zero is only slightly different from the 
solution in the planar case; therefore, for all v in the calculations we chose initial data 
corresponding to the centered wave /l/, i.e., 

Fig.3 
Fig.1 

Fig.1 shows the graphs of the calculations of r/(t) for i = 3, 4 = 0.01. - Curves l-4 corres- 
pond to the values of y: 1.4; i.7; 3; 3. For 'I'< y0 ( yor; 1.12 whenr = 2,; yOs 1.45 whenf= 3) the absolute 
value of the medium's velocity everywhere in the flow region is less than on thefreehoundary 
and the flow profiles are monotonic. When ?'>?a the absolute value of the medium's velocity 
immediately after the free boundary, beginning with the instant when u'(t)= 0, becomes larger 
than on the boundary, i.e., the medium next to the free boundary begins to accelerate and con- 
dense. When t<4 the singularity in the solution always arises at t= O.For y<yy+= 1-t 3/i 
the instant of origin of the singularity, to the right of to, coincides with the focussing 
instant t,. These values of Ye coincides with those found earlier (*). When Y>V* an in- 
finite gradient arises on the free boundary at the instant t. (O<t,<t,). Fig.2 shows the 
function z*(v)= 1 -&It, (the solid curve corresponds to I= 2 and the dashed, to i= 3). We 
recall that when t=O the free boundary was located at z=i. Thus, when Y<Y* a boundary 
point for the convergence domain of the series is the point 1~0, while when Y>Y*,thepoint 
z = Z*. 

To describe the whole flow region we can use for OQt<&, the series (1.2) for l<y<3 or 
the centered rarefaction wave for y>l, for t ,,<ttL we can use series (2.4) in a neighborhood 
of the free boundary and the series for function Y (r,t)in powers of r in aneighborhoodofthe 
weak discontinuty /4/. All these solutions are well matched with each other in the middle 
part of the flow region. When y>3 the solution in a neighborhood of the free boundary has 
been constructed under an assumption on the corresponding decay of the initial discontinuity. 
Qualitatively, this solution is consistent with those found earlier: for large Y infinite 
gradients arise sufficiently rapidly in the flow and the free boundary begins to accelerate. 
Of course, we can use the series under the condition that in the middle partofthe flowregion 
no singularities arise. It can be shown that there will not be a weak discontinuity inside 
the flow region; therefore, it is necessary to observe only the origin of the free gradients. 
Rather obvious calculation by difference methods over the whole flow region showed that when 
Y<Y* there are no large gradients in the flow. When Y>Y. they arise on the free boundary at 

instants compatible with L. Fig.3 shows the dependenck of the square of the medium's veloc- 
ity on zwhen i=3. Curves 1,2,3 correspond to the values: y= 1.4, t= t,;y= 1.7, t= t,zt,;y= 2, 
t = t, < t,. When Y>Y* the flow's properties of being potential and isentropic are violated at 
the instant t= t*.After this the free boundary begins to accelerate at the expense of the 
medium becoming denser. Therefore, for a further description of the motion it is necessary, 
in general, to use the complete system of equations of gasdynamics, possibly, to introduce 
shock waves or weak discontinuities, and to make use of the solution obtain in the present 
paper for prescribing the initial conditions at t= t,. The question on whether the solutionof 
this new problem is selfsimilar still remains open. 

In this paper we have considered the case of cavity collapse, but the majority of the 
formulas and calculations carry over without the principal changes to the case of expansion 

*) See the footnote on p.41. 
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(the vacuum is outside and the medium inside). 
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